Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (7): 63-73.doi: 10.3969/j.issn.2097-0706.2024.07.008
• Energy Storage Technology • Previous Articles Next Articles
HUANG Xiaofan1(), LI Jiarui1, LIU Hui2, TANG Xiaoping1, WANG Ziyao1, WANG Tong1
Received:
2024-03-18
Revised:
2024-04-18
Published:
2024-07-25
Supported by:
CLC Number:
HUANG Xiaofan, LI Jiarui, LIU Hui, TANG Xiaoping, WANG Ziyao, WANG Tong. Comprehensive benefit analysis on the cascade utilization of a power battery system[J]. Integrated Intelligent Energy, 2024, 46(7): 63-73.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.07.008
Table 3
List of lithium battery at production stage per PU
类别 | 材料名称 | 数值 | |
---|---|---|---|
输入 | 正极片制造流程 | 磷酸铁锂/kg | 2.67 |
正极导电碳/kg | 1.16 | ||
PVDF/kg | 0.12 | ||
NMP/kg | 0.12 | ||
去离子水/kg | 15.40 | ||
负极片制造流程 | 羧甲基纤维素钠(CMC)/kg | 0.02 | |
丁苯乳胶(SBR)/kg | 0.58 | ||
铜箔/kg | 1.00 | ||
石墨/kg | 0.07 | ||
装配流程 | 隔膜/kg | 0.02 | |
铝壳/kg | 0.67 | ||
聚对苯二甲酸乙二醇酯/kg | 0.02 | ||
BMS/kg | 0.16 | ||
水/m3 | 2.27 | ||
注液流程 | LiPF6/kg | 0.38 | |
DMC/kg | 1.07 | ||
碳酸乙烯酯(EC)/kg | 0.65 | ||
能源消耗 | 电力/(kW·h) | 35.50 | |
天然气/m3 | 1.67 | ||
运输 | 柴油重卡运输/(kg·km) | 3.30 | |
输出 | 废水处理 | 总废水量/kg | 12.60 |
化学需氧量(COD)/kg | 6.30×10-4 | ||
固体悬浮物(SS)/kg | 1.26×10-4 | ||
氨氮/kg | 9.58×10-5 | ||
总磷/kg | 2.58×10-6 | ||
废气排放 | CO/kg | 4.33×10-6 | |
SO2/kg | 1.75×10-5 | ||
非甲烷总烃/kg | 1.32×10-2 | ||
NOx/kg | 3.12×10-3 | ||
粉尘/kg | 4.19×10-4 | ||
产品 | LFP电池/kg | 9.38 |
[1] | 国家能源局. 加快发展可再生能源是我国中长期发展战略的重要选择[EB/OL].(2012-10-08) [2023-12-03]. http://www.nea.gov.cn/2012-10/08/c_131893162.htm. |
[2] |
张永新, 闫鹏领, 朱国栋. 电动汽车充电站站网互动运行优化技术研究与实践[J]. 综合智慧能源, 2022, 44(6): 45-51.
doi: 10.3969/j.issn.2097-0706.2022.06.005 |
ZHANG Yongxin, YAN Pengling, ZHU Guodong. Research and practice on the EV station-to-grid interactive operation optimization technology[J]. Integrated Intelligent Energy, 2022, 44(6): 45-51.
doi: 10.3969/j.issn.2097-0706.2022.06.005 |
|
[3] | 陈洪亮, 徐海博, 孙瑞雪. 计及电动汽车移动储能动态电价的微电网优化调度研究[J]. 东北电力技术, 2024, 45(3):50-56. |
CHEN Hongliang, XU Haibo, SUN Ruixue. Research on optimal dispatching of microgrid considering dynamic electricity price of electric vehicles mobile energy storage[J]. Northeast Electric Power Technology, 2024, 45(3):50-56. | |
[4] | 李丽, 来小康, 慈松. 动力电池梯次利用与回收技术[M]. 北京: 科学出版社, 2020. |
[5] | 刘若桐, 李建林, 吕喆, 等. 退役动力电池应用潜力分析[J]. 电气技术, 2021, 22(8): 1-9. |
LIU Ruotong, LI Jianlin, LÜ Zhe, et al. Application potential analysis of decommissioned power batteries[J]. Electrical Engineering, 2021, 22(8): 1-9. | |
[6] | 李珊. 供需视角下中国动力电池梯次利用现状及展望[J]. 中国资源综合利用, 2022, 40(5):122-126. |
LI Shan. Current situation and prospects of cascade utilization of power batteries in china from the perspective of supply and demand[J]. China Resources Comprehensive Utilization, 2022, 40(5):122-126. | |
[7] |
于会群, 胡哲豪, 彭道刚, 等. 退役动力电池回收及其在储能系统中梯次利用关键技术[J]. 储能科学与技术, 2023, 12(5):1675-1685.
doi: 10.19799/j.cnki.2095-4239.2023.0036 |
YU Huiqun, HU Zhehao, PENG Daogang, et al. Key technologies for retired power battery recovery and its cascade utilization in energy storage systems[J]. Energy Storage Science and Technology, 2023, 12(5):1675-1685.
doi: 10.19799/j.cnki.2095-4239.2023.0036 |
|
[8] |
赵光金, 李博文, 胡玉霞, 等. 退役动力电池梯次利用技术及工程应用概述[J]. 储能科学与技术, 2023, 12(7):2319-2332.
doi: 10.19799/j.cnki.2095-4239.2023.0288 |
ZHAO Guangjin, LI Bowen, HU Yuxia, et al. Overview of the echelon utilization technology and engineering application of retired power batteries[J]. Energy Storage Science and Technology, 2023, 12(7):2319-2332.
doi: 10.19799/j.cnki.2095-4239.2023.0288 |
|
[9] | 中国汽车工业协会. 截至2021年底,全国新能源汽车保有量达784万辆,其中纯电动汽车保有量640万辆[EB/OL]. (2022-12-03)[2023-12-03]. http://www.caam.org.cn/chn/7/cate_120/con_5235354.html. |
[10] | 张国强, 徐艳梅. 新能源汽车政策工具运用的国际镜鉴与引申[J]. 改革, 2017(3):130-138. |
ZHANG Guoqiang, XU Yanmei. International mirror and extension of new energy vehicle policy tools[J]. Reform, 2017(3):130-138. | |
[11] | 陈力维, 高润泽. 我国新能源汽车技术发展现状分析[J]. 交通节能与环保, 2021, 17(6):14-19. |
CHEN Liwei, GAO Runze. Analysis on the current status of China's new energy vehicle technology development[J]. Transport Energy Conservation & Environmental Protection, 2021, 17(6):14-19. | |
[12] | 中华人民共和国工业和信息化部. 《汽车动力蓄电池行业规范条件》企业目录(第二批)[EB/OL]. (2016-01-20)[2023-12-03]. https://wap.miit.gov.cn/jgsj/zbys/wjfb/art/2020/art_23125569f914408aae4a039992c1c102.html. |
[13] | 李建林, 王哲, 许德智, 等. 退役动力电池梯次利用相关政策对比分析[J]. 现代电力, 2021, 38(3):316-324. |
LI Jianlin, WANG Zhe, XU Dezhi, et al. A comparative analysis of relevant policies is made on retired power batteries[J]. Modern Electric Power, 2021, 38(3):316-324. | |
[14] | 袁锡莲. 削峰填谷场景下的梯次电池储能系统经济评估研究[D]. 长沙: 湖南大学, 2021. |
YUAN Xilian. Research on economic evaluation of second-use battery energy storage system in the scene of peak load shaving[D]. Changsha: Hunan University, 2021. | |
[15] | 李娜, 刘喜梅, 白恺, 等. 梯次利用电池储能电站经济性评估方法研究[J]. 可再生能源, 2017, 35(6):926-932. |
LI Na, LIU Ximei, BAI Kai, et al. Research on the economic evaluation method of secondary battery energy storage[J]. Renewable Energy Resources, 2017, 35(6):926-932. | |
[16] |
李雄, 李培强. 梯次利用动力电池规模化应用经济性及经济边界分析[J]. 储能科学与技术, 2022, 11(2):717-725.
doi: 10.19799/j.cnki.2095-4239.2021.0487 |
LI Xiong, LI Peiqiang. Analysis of economics and economic boundaries of large-scale application of power batteries in cascade utilization[J]. Energy Storage Science and Technology, 2022, 11(2):717-725.
doi: 10.19799/j.cnki.2095-4239.2021.0487 |
|
[17] | 齐凌霄. 基于退役动力电池梯次利用的用户侧储能系统容量配置及价值评估方法研究[D]. 北京: 北京交通大学, 2020. |
QI Lingxiao. Research on capacity allocation and value evaluation method of user-side energy storage system based on second-use of retired power batteries[D]. Beijing: Beijing Jiaotong University, 2020. | |
[18] | 张婳. 计及梯次利用电池的储能优化规划[D]. 北京: 华北电力大学, 2017. |
ZHANG Hua. Energy storage optimization planning considering second-use batteries[D]. Beijing: North China Electric Power University, 2017. | |
[19] | 刘伟. 典型蓄电池生命周期评价研究——以铅酸蓄电池和锂离子电池为例[D]. 济南: 山东大学, 2017. |
LIU Wei. Life cycle assessment research of typical storage battery—A case study of lead acid battery and lithium ion battery[D]. Jinan: Shandong University, 2017. | |
[20] | 肖胜权. 基于全生命周期评价的动力电池环境效益研究[D]. 厦门: 厦门大学, 2019. |
XIAO Shengquan. Research on environmental benefit of power battery based on life cycle assessment[D]. Xiamen: Xiamen University, 2019. | |
[21] | 王琢璞. 新能源汽车动力电池回收利用潜力及生命周期评价[D]. 北京: 清华大学, 2018. |
WANG Zhuopu. Potential and life cycle assessment of recycling of power batteries for new energy vehicles[D]. Beijing: Tsinghua University, 2018. | |
[22] | WILSON N, MEIKLEJOHN E, OVERTON B, et al. A physical allocation method for comparative life cycle assessment: A case study of repurposing Australian electric vehicle batteries[J]. Resources, Conservation and Recycling, 2021, 174:105759. |
[23] | WU F, LI L, CRANDON L, et al. Environmental hotspots and greenhouse gas reduction potential for different lithium-ion battery recovery strategies[J]. Journal of Cleaner Production, 2022, 339:130697. |
[24] | QUAN J W, ZHAO S Q, SONG D M, et al. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies[J]. Science of the Total Environment, 2022, 819:153105. |
[25] | HAN X Q, LI Y X, NIE L, et al. Comparative life cycle greenhouse gas emissions assessment of battery energy storage technologies for grid applications[J]. Journal of Cleaner Production, 2023, 392:136251. |
[26] |
何沭纬, 韩颖慧, 徐文斌, 等. 不同能源策略下北京市私有机动车辆CO2排放系统仿真模拟[J]. 综合智慧能源, 2023, 45(8): 26-35.
doi: 10.3969/j.issn.2097-0706.2023.08.004 |
HE Shuwei, HAN Yinghui, XU Wenbin, et al. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies[J]. Integrated Intelligent Energy, 2023, 45(8): 26-35.
doi: 10.3969/j.issn.2097-0706.2023.08.004 |
[1] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[2] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[3] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[4] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[5] | LIU Yuanyuan, GENG Zhi, ZHANG Yuanfeng, ZHANG Liang, HAN Zhao, ZHANG Bin. Analysis of heat transfer characteristics and thermal-permeability coupling characteristics of single U-tube borehole heat exchangers [J]. Integrated Intelligent Energy, 2023, 45(4): 81-88. |
[6] | YANG Zhengjun, LIANG Shixing, XU Gang, LIU Wenyi, WANG Ying, CUI Jianwei. Capacity optimization configuration of wind-solar complementary electricity-alcohol cogeneration system [J]. Integrated Intelligent Energy, 2023, 45(12): 71-78. |
[7] | WANG Kaiting, LI Xiaobin, ZHANG Hongna, LIU Shen, QU Kaiyang, LI Fengchen. Comprehensive evaluation for energy saving and emission reduction performance of turbulent drag reducing agent in heating systems [J]. Integrated Intelligent Energy, 2022, 44(9): 40-50. |
[8] | JIANG Shu, LIU Fangfang, LIU Yuanyuan, CHEN Qizhao, LIAN Li, REN Mengnan. Comprehensive cascade application of "geothermal energy +" in engineering practice [J]. Integrated Intelligent Energy, 2022, 44(9): 59-64. |
[9] | XU Yangsen, ZHANG Lei, BI Lei. Development and challenges of intermediate-temperature proton-conducting solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 68-74. |
[10] | Hengyuan GUO, Xiaofeng FENG, Guodong LI, Zhiguo DUAN, Yuanzheng LI. Low-carbon collaborative optimization for the commitment and maintenance of units considering hydrogen production equipment [J]. Integrated Intelligent Energy, 2022, 44(5): 78-87. |
[11] | WU Linrui, LIU Lu, MENG Yu, LI Yan, HU Nan, XU Hailong, CHEN Meiqi, ZHENG Wukang. Research progress of carbon-based catalyst materials for cathodes of Zn-air batteries [J]. Integrated Intelligent Energy, 2022, 44(4): 65-70. |
[12] | CHEN Zehong, LIAO E, WU Lei, CAO Qi, CHEN Guoqiang, DU Guanghan, LIU Guixiu, LI Gen. Stress calculation for supports and hangers of molten salt pipelines in solar thermal power stations [J]. Integrated Intelligent Energy, 2022, 44(4): 85-91. |
[13] | CUI Shuangshuang, SUN Shanxun. Study on the correlation of wind turbine variables under different conditions [J]. Integrated Intelligent Energy, 2022, 44(12): 49-55. |
[14] | FENG Lejun, FU Zhihao, LIU Feng, GONG Yutong, LI Yimin, HAN Dongjiang, SUI Jun. Study on the influence of technical and economic factors on the economy of a natural gas distributed energy system [J]. Integrated Intelligent Energy, 2022, 44(10): 65-70. |
[15] | DAI Jiang, JIANG Youquan, TIAN Nianjie, ZHAO Qian, ZHAO Xiangyu. Design and practice of peak regulation ancillary service market in Guizhou for achieving carbon neutrality and carbon peaking [J]. Huadian Technology, 2021, 43(9): 85-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||